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ABSTRACT

We present a theory for the generation of mesoscale (k rgT1, where rg is the cosmic-ray gyroradius) magnetic
fields during diffusive shock acceleration. The decay or modulational instability of resonantly excited Alfvén waves
scattering off ambient density perturbations in the shock environment naturally generates larger scale fields. For a
broad spectrum of perturbations, the physical mechanism of energy transfer is random refraction, represented by the
diffusion of Alfvén wave packets in k-space. The scattering field can be produced directly by the decay instability or
by the Drury instability, a hydrodynamic instability driven by the cosmic-ray pressure gradient. This process is of
interest to acceleration since it generates waves of longer wavelength, and so enables the confinement and acceleration
of higher energy particles. This process also limits the intensity of resonantly generated turbulent magnetic fields on rg
scales.

Subject headinggs: acceleration of particles — cosmic rays

1. INTRODUCTION AND OVERVIEW

1.1. Status of the CR Acceleration Problem

There is an increasingly popular view that the cosmic-ray (CR)
spectrum above the ‘‘knee’’ (about 1015 eV) is produced by the
same accelerator (or accelerators) as the part below the knee. The
latter portion of the spectrum is better understood. As is usually
argued, spectrum softening at the knee (fromE!2:7 toE!3:1) forces
adherents to the premise of extragalactic origin for CRs above
the knee to also explain why the Galactic part of the spectrum
terminates at precisely the point at which the extragalactic part
appears. Therefore it appears desirable to explain the CR spectrum
straight up to its next feature, the ‘‘ankle’’ (at about 1018 eV), by a
single mechanism operating in one accelerator or in a group of
similar accelerators. Supernova remnant (SNR) shocks are now
considered to be the most promising candidate for that purpose.
Recent discussion of available suggestions that seek to accelerate
(CRs in SNRs to energies beyond the knee can be found in Parizot
et al. [2004] and Hillas [2005]).

Of course, SNRs are almost certainly responsible for the CR
(at least electron) acceleration below the knee, which is docu-
mented in several ways (see Aharonian [2004] for a compre-
hensive review of detection techniques and physical processes).
In particular, there is evidence (Koyama et al. 1995; Tanimori
et al. 1998; Allen et al. 2001; in the form of both synchrotron
and inverse Compton radiation) that electrons of energies up to
100 TeVare accelerated in the supernova shock waves. Recently,
accelerated electrons with record energies up to at least 450 TeV
have been discovered in a young shell-type supernova remnant
G12.8-0.0 (Brogan et al. 2005). Interestingly enough, this source
was previously detected in the !-ray band by the High Energy
Stereoscopic System (HESS) Cerenkov telescope (Aharonian
et al. 2005).

By association, the electron acceleration mechanism should
also be responsible for accelerating the main CR component,
namely, the protons. Indeed, at ultrarelativistic energies particle
dynamics is determined by particle momentum (i.e., rigidity),
regardless of mass. However, the acceleration of protons in SNR
shocks has not been conclusively confirmed. The only SNRwhere
a signature of accelerated protons was claimed to be observed is
RX J1713.7!3946 (Enomoto et al. 2002). This source was first

detected in the !-ray band by the CANGAROO team (Muraishi
et al. 2000) and later confirmed by HESS (Aharonian et al. 2004).
However, the claim made by the CANGAROO team (Enomoto
et al. 2002) became a subject of significant controversy (Reimer&
Pohl 2002; Butt et al. 2002), primarily on the grounds that expla-
nation of the data would require a break in the energy spectrum of
accelerated protons, while the standard diffusive shock acceler-
ation (DSA) mechanism does not predict the necessary break. A
possible resolution of this controversy, based on nonlinear effects
in the diffusive acceleration mechanism along with the generation
of a break due to modification of particle confinement in molec-
ular clouds surrounding the remnants (via neutral particle effect on
Alfvén waves), was recently suggested by Malkov et al. (2005).
The latest high-resolution observations with HESS (Aharonian
et al. 2006) are also consistent with the presence of a break in the
spectrum in the TeVenergy range, but only future, more accurate
data will be able to distinguish between the different possible
functional forms of the high-energy spectrum predicted by differ-
ent models. The simplest (and by far the most popular) approach,
based on a power-law spectrum with an exponential cutoff, pro-
duces almost as good a fit to the current data as the spectrumwith
a break (Aharonian et al. 2006) does. However, the spectral break
is a distinguishing feature that reveals valuable information about
the physical processes responsible for its formation and about ac-
celeration in general. These processes include, but are not limited
to, quasi-abrupt changes in

1. the dynamics of waves that confine particles (Malkov et al.
2002, 2005; Diamond & Malkov 2004)
2. the overall acceleration regime (Drury et al. 2003), and
3. the particle confinement regime (Malkov&Diamond 2006).

Further broadband studies of RX J1713.7!3946 are also needed
to fully resolve the dilemma of hadronic versus leptonic origin of
theTeVemission. Recent TeVobservationswithHESS (Aharonian
et al. 2004) allowed authors to suggest that both leptonic and had-
ronic components are being accelerated in this object. Further-
more, the latest observationswith the same instrument (Aharonian
et al. 2006) seem to indicate a decline in the proton spectrum at
energies"100 TeVif the observed spectrum can be interpreted as
a by-product of the interaction of accelerated protons with the am-
bient gas. From a theoretical standpoint, a very interesting aspect
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of this spectrum is that it is significantly softer than one would
expect from a strong shock in a nonlinear (spectral index ’ 1.5)
or even in a linear regime (spectral index = 2.0). Should future
measurements confirm that it must be interpreted as a piece of a
broken power-law spectrum (Malkov et al. 2005), rather than its
cutoff (Berezhko & Voelk 2006), a new interpretation requiring
newDSA physics, along the lines of items 1Y3 above, will be nec-
essary. Note that current numerical models (e.g., Berezhko &
Voelk 2006) do not include the wave-particle interaction effects
necessarily involved in items 1 and 3. Unfortunately, even the
high-quality TeV data of Aharonian et al. (2006) degrades sta-
tistically at photon energies above 10 TeV, where the spectrum
begins to decline. Nevertheless, the spectrum appears more like
a broken power law at 10 TeV rather than a power law with an
exponential cutoff. The latter is more consistent with the time-
dependent acceleration or energy loss scenario (see, e.g., Fig. 12
in Aharonian et al. [2006] and Fig. 8 in Berezhko & Voelk
[2006]) implemented in most numerical models.

Interestingly, even observations of the background CRs pose
similar problems to the standard acceleration theory. The most
notorious one is perhaps the overall CR spectrum itself, which,
as discussed earlier, is too steep in its high-energy part (i.e., above
the knee) to be explained straightforwardly by standard accelera-
tion theory. Leaving aside energy-dependent propagation of CRs
as well as their reacceleration (which may also significantly influ-
ence their spectrum, as noted by Ptuskin et al. 1997), one can
distinguish two problems. The first problem is the physical origin
of the break (knee), and the second problem is the very stringent
requirements on the acceleration parameters, such as the turbulent
component of the magnetic field, in order to reach to the very high
‘‘ankle’’ energy of "1018 eV.

1.2. Approaches to Enhanced DSA

The important quantities that regulate DSA are the strength
and spectral distribution of the turbulent magnetic field, "B. The
magnetic turbulence confines accelerated particles to the shock
front by pitch-angle scattering and is believed to be produced by
the particles themselves, via CR-Alfvén wave resonance when
CRs stream ahead of the shock. Note that in a broader cosmo-
logical context the CRYmagnetic field nexus has been recently
discussed by Zweibel (2003). Within standard quasi-linear the-
ory (which is strictly valid only for "BTB0), pitch-angle scat-
tering of relativistic particles by the waves proceeds at the rate
(e.g., Blandford & Eichler 1987)

# " !
mc

p

"B

B0

! "2
; ð1Þ

where ! and p are the (nonrelativistic) gyrofrequency and
momentum. Resonance requires krg ¼ constant. Particle self-
confinement along the field is diffusive, and the diffusivity is
$ " c2/#. The acceleration timescale can be estimated as %acc "
$/u2

s (Toptygin 1980; Axford 1981; Lagage & Cesarsky 1983;
Drury 1991), where us is the shock speed. The fluctuating part
of the field is usually assumed to saturate at the level of the am-
bient field, "B " B0, which thus produces pitch-angle scattering
at the rate of ! (the gyrofrequency), which limits the particle
mean free path (mfp) along the field to a distance of the order of
gyroradius. This constitutes the so-called Bohm diffusion limit.
Under these circumstances, the mean field B0 sets the acceler-
ation rate and the maximum particle energy. The latter can be
expressed through the work done by the induced electric field
us/cð ÞB0 on the particles while they are carried with the shock at
speed us over the length scale of the shock radius, Rs. Thus, the

maximum energy is Emax " (e/c)usB0Rs. Thus, one arrives at
the maximum CR energy accelerated in a typical SNR shock of
about 1015 eV, which is close to the knee but is 3 orders of mag-
nitude below the ‘‘ankle.’’ Before discussing any approaches to
enhanced, beyond-the-knee, acceleration, it is important to note
that, due to the resonance condition kp ¼ constant, confinement
of higher energy particles requires that longer waves must be
excited. Put another way, inverse scattering or transfer of Alfvén
wave energy excited at krg " 1 to longer scales is clearly bene-
ficial to confinement and acceleration.

In order to reach the energy of the ‘‘ankle’’ several suggestions
have been made. One approach is to invoke the generation of a
fluctuating field component "B significantly in excess of the un-
perturbed fieldB0 (Lucek&Bell 2000). Physically, such genera-
tion is deemed possible since the free energy source is the pressure
gradient of accelerated particles, which may reach a significant
fraction of the shock ram energy. Specifically, a free energy limit
on the wave energy density "B/B0ð Þ2 may be related to the partial
pressure Pc of CRs that resonantly drive the waves by the relation
(MacKenzie & Voelk 1982)

"B=B0ð Þ2" MAPc=&u
2
s : ð2Þ

Here MA ¼ us/VA 31 is the Alfvén Mach number and &u2
s is

the shock ram pressure. Of course, when "B/B0 exceeds unity,
particle dynamics, and thus the particle confinement and accel-
eration rates, depart radically from the quasi-linear picture that
underpins the usual DSA theory and modeling. The simple case
of a monochromatic wave with arbitrary "B/B0, in which particle
dynamics are exactly integrable (Lutomirski & Sudan 1966) pro-
vides an important clue to the general case (e.g., Malkov 1998). A
critical parameter is kr&g , where k is the wavenumber and r&g is the
particle Larmor radius calculated with the perturbed "B3B0

field, rather than B0; Figure 1. Particles with kr&g P 1 perceive a
strong local field that is perpendicular to B0, and therefore their
confinement in the B0 direction is good. Particles with kr&g > 1
perceive only the averaged, rather than the local field, which is
weak. The "B component (even if it is large) exerts only a (rapidly)
oscillating force on these particles, which thus can escape along
B0. Put more mathematically, for kr&g 31, the particle response is
the Boltzmann response. For the resonantly drivenwaves krg " 1,
and so if the waves grow nonlinearly until r&gTrg, the particles
that initially destabilize the waves are trapped by the wave, thus
saturating the instability in the wave band corresponding to their
energy (Lucek & Bell 2000). This is analogous to the saturation
of the beam-plasma instability for the so-called hydrodynamic re-
gime, for which the wave stops growing when its amplitude is
sufficient to trap the beam particles. The numerical studies by
Lucek &Bell (2000) showed that at least for the case of anMHD
background plasma and rather narrowwave (and particle energy)
band, the amplitude of the principal mode can reach a few times
that of the background field. Moreover, Bell & Lucek (2001)
argue that in the case of efficient acceleration, field amplification
may be even stronger, reaching a milligauss level from the back-
ground of a fewmicrogauss ISMfield, thus providing acceleration
of protons up to 1017 eV in SNRs. More studies in this direction,
concerning in particular nonresonant generation of Alfvén waves
and the formation of nonlinear magnetic field structures, have
been recently performed by Bell (2004, 2005), while the impor-
tant issue of dissipation of the rms field has been considered by
Pohl et al. (2005). The interesting nonresonant instability dis-
cussed by Bell (2004, 2005) is a firehose mode driven by the
return current required to neutralize the charge induced by the
streaming of high-energyCR protons. Observational indications
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of possible amplification of the turbulent magnetic field have
been discussed, e.g., by Uchiyama et al. (2003), Vink & Laming
(2003), and Bamba et al. (2005). In view of the above discussion,
however, we would like to emphasize that the simulations of Bell
and Lucek are intrinsically limited precisely because they are
narrowband. Thus, wave-particle interaction is quite restricted,
and the simulations do not allow any interaction of Alfvén waves
with other types of fluctuations that, in reality, are likely to be
present in a shock environment. Moreover, Bell and Lucek did
not address the question of how to compute the particle scatter-
ing rate for "B3B0. Certainly, it is not correct to simply plug
such a large amplitude into the usual quasi-linear diffusion coef-
ficient, equation (1).

Recently, Ptuskin & Zirakashvili (2003) approached this prob-
lem from a different perspective. They considered a Kolmogorov-
type turbulent cascade to small scales, assuming the waves are
generated by efficiently accelerated particles on the long-wave
part of the spectrum. The question of why such a Kolmogorov-
like cascade model is relevant to a shock environment was not
addressed. They obtained a maximum particle energy similar to
the result of Bell & Lucek (2001). Yet another consequence
of high magnetic field fluctuation levels, which is based on the
change of the expansion regime of the SNR shocks, is discussed
by Drury et al. (2003). An important question that still remains
is how realistic is the saturation level given by equation (2)?
Earlier studies byVoelk et al. (1984) and Achterberg & Blandford
(1986) suggest that due to particle trapping, the instability satu-
rates at levels "B " B0. For Alfvén turbulence, consideration of
random parallel scattering (i.e., turbulent mirroring; Achterberg
1981; Achterberg & Blandford 1986) implies a similar saturation
level. Thus, the questions of the saturation level and the mecha-
nism of confinement of high-energy particles remain unanswered.

Motivated by the above issues and by the problems in describ-
ing the observed high-energy spectra as outlined in x 1, Malkov

& Diamond (2006) suggested a faster-than-Bohm-rate accelera-
tion, which is also intimately related to the knee and other spectral
break phenomena. The mechanism does not require "B/B0 31
magnetic field fluctuations, since particles gain energy by bounc-
ing between the scatterers convected with the gradually converg-
ing upstream flow in a nonlinearly modified shock precursor. This
is different than the bouncing between the upstream and down-
stream scattering centers, which is usually assumed in DSA mod-
els. Note that in the latter case the acceleration rate decreases
with energy, on account of increasing particle mfp (particle dif-
fusion length at the shock). This generic deficiency of the DSA is
not relevant to the recently proposed mechanism, since the in-
crease in mfp is exactly compensated by the increased flow-
induced compression of the scattering centers between which the
particle bounces in the precursor flow. The maximummomentum
is estimated to be

pmax "
c

ush

L

Lp
p&; ð3Þ

where L/Lp is the ratio of the distance between the scattering
centers (weak shocks) to the precursor length (roughly estimated
to be P10) and p& is the maximum momentum achieved during
the standard phase of the DSA, which becomes the break point or
knee of the final spectrum. The spectral index between p& and pmax

is steeper than the ‘‘standard’’ p!4, and its slope depends on
details of particle interactionwith scatterers. The acceleration time
is

%acc pmaxð Þ " %NL p&ð Þ ln pmax

p&
; ð4Þ

where %NL pð Þ ’ 4$B pð Þ/u2
sh (with the Bohm diffusion $B) is the

nonlinear acceleration time (Malkov & Drury 2001), which only
slightly differs from the upstream contribution to the standard lin-
ear acceleration time.

1.3. Inverse Cascade and Enhanced DSA

The theory of enhanced acceleration via bouncing between
scatterers undergoing compression in the precursor flowdescribed
above does not specifically address magnetic field effects. In-
deed, one is naturally motivated to ask whether it is, in fact, pos-
sible to achieve "B3B0 in a turbulent environment wheremany
types of different wave interactions are possible. If such high
levels are not achieved, one thenmust confront the issue of how to
confine high-energy particles to the shock. To this end, Diamond
& Malkov (2004) previously suggested an acceleration scenario
inwhich themagnetic fieldmay interact stronglywith the shock as
a result of the acceleration itself, which, in turn, may in fact be
strongly enhanced. Themechanism of such enhancement is based
on the transfer of magnetic energy to longer scales via wave-wave
interaction, which we call ‘‘inverse cascade’’ for short, even
though specificmechanisms of such transfer may differ fromwhat
is usually understood as a local, self-similar cascade in MHD
turbulence. This transfer is limited only by an outer scale Lout—
likely the shock precursor size $( pmax)/us " rg( pmax)c/us 3
rg( pmax). The conceptual picture of this process is simple. There
are two populations of fluctuations naturally native to a shock en-
vironment. These are

1. Alfvén waves, resonantly generated at small scales, i.e.,
krg " 1;
2. acoustic waves and density fluctuations, at kLout > 1 but

not 31. Acoustic modes can be generated by many processes.

Fig. 1.—Weak and strong types of magnetic fluctuations with superimposed
particle trajectories.
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The density perturbation field naturally refracts the Alfvén wave
field; that is,

dk

dt
¼ ! @

@x
! ¼ ! @

@x
kVA ’ kVA

2

@

@x

&̃

&0
:

For a random array of scatterers, k evolves diffusively, so dif-
fusion of the Alfvén wave spectrum results, with

Dk ’
k 2V 2

A

4

X

q

&̃q
&0

####

####
2

q2%cq;

where % cq is the correlation time for the q mode. This diffusion
naturally spreads the Alfvén wave population in k, and so pre-
vents the development of either a narrow spatial band or a beam
with "B/B0 31. This scattering also generates longer waves,
which can in turn confine higher energy particles. Here the Alfvén
wave population density flux is simply

"k ¼ !Dk
@N

@k
;

where N is the Alfvén wave population density (i.e., wave ac-
tion densityN ¼ E/!). Since @N /@k > 0 for krg < 1 (i.e., Alfvén
waves are excited at krg P 1), the flux is toward larger scales and
lower k values. It is important to note that this process is nonlocal
inwavenumber and thus not a true cascade in the traditional sense,
and also is not a ‘‘dynamo,’’ but rather a redistribution of mag-
netic energy among different scales. This approach is in distinct
contrast to the models of Bell & Lucek (2001) and Ptuskin &
Zirakashvili (2003) discussed above, which work with magnetic
fields on scale lengths of order of Larmor radius rg( pmax) of the
highest energy particles, and even smaller. The advantage of an
inverse cascade for acceleration is that longer waves confine
higher energy particles and that the turbulent field at the outer
scale "B(Lout) ' Brms (generated by the flux in wavenumber
space), which necessarily must have long autocorrelation time
can likely be regarded as an ‘‘ambient field,’’ as far as accelerated
particles of all energies are concerned. If Brms 3B0, then the
acceleration can be enhanced by a factor Brms/B0. Note that the
resonance field "B(rg) remains smaller than Brms, so that standard
arguments about Bohm diffusion apply. Since the fluctuations
around the new ‘‘background’’ fieldBrms remain relatively weak,
they are not likely to dissipate so rapidly via nonlinear processes,
such as induced scattering on thermal protons, as is to be expected
in the case "Bk B0, when the transfer of energy from resonant
fluctuations "B to the large-scale Brms is not taken into account. In
particular, such nonlinear processes were not included in the en-
hanced acceleration models of Lucek & Bell (2000) and Bell &
Lucek (2001). These can reduce the resonant fluctuation field
significantly.

As should be clear from the discussion above, an adequate de-
scription of the acceleration mechanism must treat both particle
and wave dynamics on an equal footing. In fact, the situation is
even more difficult, since the acceleration process turns out to be
so efficient that the pressure of accelerated particles markedly
modifies the structure of the shock by both the overall shock
compression and the flow profile. Historically, these three aspects
of the mechanism have been considered in isolation. First, a test
particle theory was formulated, in which wave generation was
only tacitly implied in the prescribed particle diffusivity, and the
backreaction of accelerated particles on the shock structure was
neglected. The latter was first included in the framework of the
so-called two-fluid model, where the accelerated particles con-

tribute to the energy and momentum fluxes across the shock but
were assumed to be massless (Axford et al. 1977; Drury &Voelk
1981). Later, kinetic models were developed, both numerically
and analytically. Early theories that include wave generation self-
consistently with the acceleration process in turn neglect particle
back-reaction on the shock (Bell 1978). The importance of a self-
consistent treatment of the nonlinear modification of the shock
structure and wave propagation has been demonstrated byMalkov
et al. (2002). That this three-way coupling (between particles,
waves, and flow) is indeed strong can be understood by consid-
ering compression of particle-generated Alfvén turbulence in
a nonlinearly modified (converging) plasma flow ahead of the
shock. Since the wavenumber of the Alfvén waves (which are
almost frozen into the flow, VATVshock) is increasing because
of compression, particles with highest energies can no longer in-
teract resonantly with the waves and so simply leave the system
along the field lines. This limits the acceleration rather naturally
as soon as particle pressure reaches a nonlinear level (compa-
rable to the flow ram pressure), sufficient to modify the flow and
cause a significantwave compression.Generation of longerwave-
length, larger scale waves, as described above, to initiate this pro-
cess, is clearly desirable.We began to study this process in Diamond
&Malkov (2004), and we continue this study in this paper. In the
spirit of the discussion of this paragraph, we treat both wave and
particle kinetics on an equal footing in the analysis presented
here.

The remainder of this paper is organized as follows. Section 2
presents the overall structure of the theory in the context of a dis-
cussion of accelerated particles, plasma flow and waves near the
shock front. Section 3 discusses the dynamics of wave interac-
tions in the shock precursor. It is divided into three subsections,
dealing with Alfvén wave turbulence, acoustic wave turbulence,
and the dynamics of Alfvénic-acoustic coupling. Section 4 pres-
ents the theory of induced diffusion of Alfvén wave quanta. Sec-
tion 5 deals with mechanisms of energy transfer to larger scales.
Section 6 presents conclusions and a discussion.

2. ACCELERATED PARTICLES, PLASMA FLOW,
AND WAVES NEAR THE SHOCK FRONT

The transport and acceleration of high-energy particles (CRs)
near a CR modified shock is usually described by a diffusion-
convection equation. It is convenient to use a distribution func-
tion f ( p) normalized to p2 dp.

@f

@t
þ U

@f

@ x
! @

@ x
$
@f

@ x
¼ 1

3

@U

@ x
p
@f

@p
: ð5Þ

Here x is directed along the shock normal, which, for simplicity,
is assumed to be the direction of the ambient magnetic field. The
two quantities that control the acceleration process are the flow
profile U (x) and the particle diffusivity $(x; p). The first one is
coupled to the particle distribution f through the equations of
mass and momentum conservation

@

@t
&þ @

@ x
&U ¼ 0; ð6Þ

@

@t
&U þ @

@ x
&U 2 þ Pc þ Pg

$ %
¼ 0; ð7Þ

where

Pc(x) ¼
4'

3
mc2

Z 1

pinj

p4 dpffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 1

p f ( p; x) ð8Þ

MAGNETIC FIELD AND PARTICLE ACCELERATION 255No. 1, 2007



is the pressure of the CR gas and Pg is the thermal gas pressure.
The lower boundary pinj in momentum space, which separates
CRs from the thermal plasma, enters the equations through the
magnitude of f at p ¼ pinj. This value specifies the injection rate
of thermal plasma into the acceleration process. The particle
momentum p is normalized tomc. Note that the two-fluid model
can be derived from the system of equations (5)Y(8) by taking
the energy moment of equation (5). The spatial diffusivity $,
induced by pitch-angle scattering, prevents particle streaming
away from the shock, and thus facilitates acceleration by en-
suring the particle completes several shock crossings.

Both the two-fluid and the kinetic treatment of the system of
equations (5)Y(8) indicate a marked departure from test particle
theory. Perhaps the most striking result of the nonlinear treatment
is the bifurcation of shock structure (in particular the shock com-
pression ratio) in the parameter space formed by the injection rate,
shockMach number, andmaximum particle momentum (Malkov
et al. 2000). In particular, for sufficiently strong shocks and high
particle energies the transition from the test particle (unmodified)
shock solution to the strongly modified, efficiently accelerating
shock solution is not gradual. It has been hypothesized that in the
critical range of parameters other physical processes must play a
crucial role. These include plasma heating and a modified particle
confinement regime, both of which are intimately related to the
wave and turbulence dynamics. We consider this in the next
section.

3. DYNAMICS OF WAVE INTERACTIONS
IN THE CR SHOCK PRECURSOR

The mechanism of transfer or scattering of Alfvén wave en-
ergy to larger scales is rather different from that associated with
the conventional picture of a turbulent MHD dynamo. Most no-
tably, it is a redistribution ofwave energy from krg " 1 to krg < 1,
where it can consequently confine higher energy particles, since
kp/m ¼ ! at resonance. This process is not one of mean field
generation or magnetic flux amplification, although the transfer to
the large scale can generate an apparent Brms on those scales.
Here, magnetic fluctuations are produced via the familiar process
of cyclotron resonance of CRs. The energy transfer mechanism
under study is simply a decay or modulational instability, which
is a nonlocal transfer of Alfvén wave energy to larger scales, via
scattering off density perturbations in the shock precursor. In con-
trast to an inverse cascade, this transfer is nonlocal in scale. In ad-
dition,we note that the shock precursor is itself linearly unstable to
acoustic perturbations. This mode is called the Drury instability,
and it ensures a well populated scattering field of density perturba-
tions off which Alfvén waves scatter. Given the plausible assump-
tion that the large-scale scatterer field is stochastically distributed
(i.e. , consists of randomly phased acoustic waves), the effect of
the decay process on the Alfvén wave spectrum is to produce a
random walk in k , via random refraction.

The spatial structure of an efficiently accelerating shock, i.e., a
shock that transforms a significant part of its energy into acceler-
ated particles, is very different from that of an ordinary shock.
The most extended part of the shock structure consists of a pre-
cursor formed by the cloud of accelerated CRs diffusing ahead
of the shock. If the CR diffusivity $( p) depends linearly on par-
ticle momentum p (as in the Bohm diffusion case), then, at least
well inside the precursor, the velocity profile U (x) is approxi-
mately linear in x (Malkov 1997), where x points downstream
antiparallel to the shock normal, Figure 2. Ahead of the shock
precursor, the flow velocity tends to its upstream value,U1, while
on the downstream side it undergoes a conventional plasma shock

transition to its downstream value U2 (all velocities are taken in
the shock frame). This extended CR precursor [of size LCR "
$( pmax)/U1] is the place where we expect turbulence to be gener-
ated by the CR streaming instability andwhere it couples to longer
wavelengths. In particular, the density fluctuations in the precur-
sor are what refracts the Alfvén waves (produced by the same
energetic particles that form the precursor) and scatter them to
larger scales.

3.1. Alfvén Wave Turbulence

The growth rate of the ion-cyclotron instability is positive for
the Alfvén waves traveling in the CR streaming direction (i.e.,
upstream), and it is negative for oppositely propagating waves.
The wave kinetic equation for both types of waves can be written
in the form

@N)

@t
þ @!)

@k

@N)

@ x
! @!)

@ x

@N)

@k
¼ !)

k N) þ C) Nþ; N!f g:

ð9Þ

Here N) k; x; tð Þ denotes the population of quanta propagating
in the upstream and downstream directions, respectively. Also,
!) are their Alfvén wave frequencies, !) ¼ kU ) kVA, where
VA is the Alfvén velocity. The linear growth (!þ) and damping
(!!) rates are nonzero only in the resonant part of the spectrum,
for which krg( pmax) * 1; i.e., !) ¼ !) kð Þ. In the most general
case, the last term on the right-hand side of equation (9) repre-
sents nonlinear interaction of different types of quanta Nþ and
N!, and also compressible MHD self-interaction of each popu-
lation, via steepening. As seen from these equations, the coeffi-
cients in the wave transport part of this equation (i.e., left-hand
side) depend on the parameters of the medium through U and
VA, which in turn may be perturbed by slow, large-scale fluc-
tuations. Interaction of Alfvén waves and density perturbations
were also recently studied by Chandran (2005) in the context of
heliospheric turbulence. This usually results in parametric or
modulational phenomena (Sagdeev & Galeev 1969). We con-
centrate on the acoustic type perturbations (whichmay be induced
by the Drury instability), so that we can write for the density & and
velocity U

& ¼ &0 þ &̃ ; U ¼ U0 þ Ũ :

Fig. 2.—Structure of a CR modified shock, with the flow profile U xð Þ and
CR pressure distribution Pc xð Þ. The subshock is at x ¼ 0, and the CR precursor
of the length Lp is formed upstream, x < 0.
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The variation of the Alfvén velocity ṼA ¼ VA ! VA0 is then

ṼA ’ ! 1

2
VA

&̃

&0
:

For simplicity, we assume that the plasma ( < 1 (ratio of gas-
kinetic to magnetic pressure), which is valid upstream of the
subshock but not downstream. Since we are primarily interested
in the upstream, shock precursor turbulence, this assumption is
at least reasonable, although one should address the ( " 1 case
as well. We will consider this in a future publication. In the down-
stream medium of a highly super-Alfvénic shock, clearly (3 1.
We neglect the variation of U compared to that of VA in equa-
tion (9). Note that fluctuations in U merely diffuse the location
of the Alfvén wave population in the precursor flow field. The
perturbations of VA in turn induce perturbations of N)

k , so we
can write

N) ¼ N)' (þ Ñ) ;

where N) k; x; tð Þ
' (

is the quantity of interest, namely the mean
wave population. This is obtained via quasi-linear theory, applied
to the wave kinetic equation in the same way it is usually applied
to the particle kinetic equation. Given that our goal is to obtain
an evolution equation for the average number of Alfvén quanta
N)' (, averaging equation (10) then yields

@

@t
N)' (þ U )VAð Þ @

@ x
N)' (! kUx

@

@k
N)' (þ @

@k
kVA

&̃x
&0

Ñ)
) *

¼ !)
k N)' (þ C N)$ %' (

: ð10Þ

Here the subscript x stands for the x-derivatives. In order to cal-
culate the correlator &̃x/&0ð ÞÑ)' (

in equation (10) via quasi-
linear closure, one must first determine the coherent response
Ñ) k; x; tð Þ to the density perturbation field &̃/&0. This requires
solution of equation (9), i.e., the calculation of modulation.
Since the precursor density fluctuations modulate a state of in-
teracting, finite-amplitude Alfvén waves, this constitutes the un-
perturbed (unmodulated) state. Thus, the solution of equation (9)
is determined by a procedure similar to the Chapman-Enskog ex-
pansion. To lowest order, then,

!)
k N) þ C) Nþ; N!f g ’ 0: ð11Þ

This relation implies that to lowest order, the linear growth rate
!þ is in balance with the local nonlinear term Cþ, and the linear
damping of counter streaming waves !! is in balance with their
generation by the scattering and conversion of forward propa-
gation waves. It is useful to note here that C is in general a 2 ; 2
matrix operator, each component of which is nonlinear in N.
Formally, the solution of equation (11) defines the unmodulated
wave streams driven by cyclotron resonance of CRs and inter-
stream interaction, and damped by energy coupling to small scales.
To first order, then,

@

@t
Ñ) þ Uþ VAð Þ @

@ x
Ñ) ! kUx

@

@k
Ñ) ! !)Ñ) þ "C

"N
Ñ)

! "

¼ ! kVA

2

&̃x
&0

@

@k
N)' ( ð12Þ

gives the equation for the response of Ñ to &̃x/&. The problem-
atical element of this equation is the last term of the left-hand

side (!) Ñ)þ "C/"N½ ,Ñ) ). We write a ‘‘Krook approximation’’
to this term as

!) Ñ) þ "C

"N
Ñ) - !#!kÑ

) ; ð13Þ

where #!k represents a nonlinear decay or damping rate. We
argue for the validity of this approximation by noting that

1. since !þ > 0, then C < 0 is required for unperturbed sta-
tionarity (i.e., eq. [11]);

2. since C represents nonlinear interaction, C must be non-
linear inN, so Ñ"C/"N > C. For example, forC ¼ !)N 2, !N !
)N 2 ¼ 0 gives the unperturbed value N0 ¼ !/) and Ñ"C/"N ¼
!2)N0 Ñ ¼ !!Ñ ;

3. thus, !) Ñ) þ "C/"Nð ÞÑ)< 0 and hence corresponds to
a damping rate, which may be approximated à la Krook as
#!k Ñ

) . Note that this result is also consistent with the require-
ment of causality, for #!k ! O *ð Þ. Note here that the approx-
imate form of the matrix C is now diagonalized.

It is tempting at this stage to take#!)
k ’ !)
## ##, where the ab-

solute value is required by consistency with causality. However,
this direct balance can be established only for resonant waves,
whereaswe are primarily interested in the larger wavelength range
krg pmaxð Þ < 1, where ! - 0. Thus,#!k is really due to nonlinear
processes in that part of the spectrum. However, to the extent that
longer waves are generated by the decay of shorter waves that are
generated by resonance, some link between#!k and !k persists.
A derivation of #!k , which treats the effect of strong nonlinear
refraction that occurs on krg < 1 scales, is presented in x 4.

To calculate the refraction termwe can nowwrite equation (10),
linearized with respect to Ñ) , as

L)Ñ) ¼ !kVA
&̃x
2&0

@

@k
N)' (; ð14Þ

where

L) ¼ @

@t
þ U ) VAð Þ @

@ x
! kUx

@

@k
þ#!)

k

is the linear propagator with an eddy damping rate#!)
k . Solv-

ing equation (14) for Ñ), we thus obtain the following mean
field equation for N)' (:

@

@t
N)' (þ U

@

@ x
N)' (! kUx

@

@k
N)' (! @

@k
Dk

@

@k
N)' (

¼ !)
k N)' (þ C N)$ %' (

: ð15Þ

Note that the mean field approximation to the refraction term in
the wave kinetic equation is a diffusion operator in k-space for
the Alfvén wave spectrum. This diffusion represents random re-
fraction by the acoustic perturbations &̃ via the density depen-
dence of VA, so

Dk ¼
1

4
k 2V 2

A

&̃x
&0

L!1 &̃x
&0

) *
: ð16Þ

Here Dk is an example of the well-known phenomenon of ‘‘in-
duced diffusion.’’ Induced diffusion is a generic type of 3-wave
interaction due to resonant triads with kþ k0 þ q ¼ 0 but jkj,
jk0j3 jqj. Such triads can be represented by thin, isosceles
triangles (Fig. 3). The basic physics of induced diffusion is ran-
dom refraction by large-scale perturbations. Induced diffusion
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can thus be obtained from eikonal theory approaches. The irrevers-
ibility that ultimately underpins the diffusion has its origins in the
stochasticity of the Alfvén wave rays in the field of density per-
turbations. Transforming to Fourier space, we first represent &̃ as

&̃ ¼
X

q

&̃qe
iqx!i!qt

and note that due to the local Galilean invariance of L, we can
calculate its Fourier representation in the reference frame moving
with the plasma at the speed U (x) as

L)
k;q ¼ )iqVA þ#!)

k ! kUx
@

@k
: ð17Þ

Then equation (16) can be rewritten as

Dk ¼
1

2
k 2V 2

A

X

q

q2 &̃q
&0

####

####
2

<L!1
k;q: ð18Þ

The last (wave refraction) term on the right-hand side of equa-
tion (17) can be estimated as U 2

1 /$( pmax), which is the inverse
acceleration time and can be neglected in comparison to the fre-
quencies qVA and #!. Hence, for <L)!1

k;q we have

<L)!1
k;q - #!)

k

q2V 2
A þ#!)2

k

: ð19Þ

Note that equation (19) states that the correlation time %c for in-
duced diffusion is set by the Alfvén wave damping time,
("1/#!k) reduced by the effects of finite transit time for a wave
to propagate through the density perturbation, if %cqVA > 1.
Clearly, equation (19) has two limits, a ‘‘strong turbulence limit,’’
where <L)!1

k;q ’ #!!1
k ¼ %ck , and a ‘‘weak turbulence limit,’’

where <L)!1
k;q ’ 1/q2V 2

A%ck . For further convenience, we write
the population density of acoustic waves (phonons) as

Ns
q ¼

Wq

! s
q

;

whereWq is the energy density of acoustic waves (with ! s
q ¼ qCs

their frequency):

Wq ¼ C 2
s

&̃2
q

&0
:

For Dk in equation (15) we thus finally have

Dk ¼
k 2V 2

A

4C 2
s &0

X

q

q2! s
q

#!)
k

q2V 2
A þ#!)2

k

N s
q : ð20Þ

Note that Dk represents the rate at which the wavevector of
the Alfvén wave random walks due to stochastic refraction. Of
course, such a random walk necessarily must generate larger
scales (smaller k), thus in turn allowing the confinement of higher
energy particles to the shock. Thus, confinement of higher energy
particles is a natural consequence of random Alfvén wave refrac-
tion in acoustic perturbations.

3.2. Acoustic Turbulence

In contrast to the Alfvénic turbulence that originates in the
shock precursor due to cyclotron emission from accelerated par-
ticles, there are (at least) two separate sources of long-wave
acoustic perturbations. One is related to parametric and modula-
tional (Sagdeev &Galeev 1969; Skilling 1975) processes under-
gone by the Alfvén waves. These take the usual form of decay of
an Alfvén wave into another Alfvén wave and an acoustic wave.
The other source is the pressure gradient of CRs, which directly
drives linear instability. The latter leads to emission of unstable
sound waves via the Drury instability. By analogy with equa-
tion (10), we can then write the following wave kinetic equation
for the acoustic waves:

@

@t
Nq þ U

@

@ x
Nq ! qUx

@

@k
Nq ¼ ! d

q þ !D
+ ,

Nq þ C Nq

- .
:

Here !D is the Drury instability growth rate !D ¼ !D 9PCR½ , and
! d
q is the growth rate of the decay instability ! d

q ¼ ! d
q Nk½ ,. We

first consider the decay instability of Alfvén waves. Note, how-
ever, that the combination of Drury instability and decay insta-
bility can lead to more rapid generation of mesoscale fields by
coupling together the linear and nonlinear processes, both of
which amplify density perturbations.

3.2.1. Modulational Instability of Alfvén Wave
Packets in a Density Scatterer Field

The mechanism of this instability is the growth of the density
(acoustic) perturbations due to the action of the ponderomotive
force on the acoustic waves by the Alfvén waves. This force can
be regarded as an effective radiation pressure term, which must

Fig. 3.—Three-wave interaction of two nearly opposite Alfvén quanta k
and k0 with a long-wave acoustic wave q.
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appear in the hydrodynamic equation of motion for the sound
waves (written below in the comoving plasma frame):

@Ṽ

@t
¼ ! 1

&0

@

@ x
c2s &̃þ P̃rad

$ %
:

Eliminating velocity by making use of continuity equation

@&̃

@t
þ &0

@Ṽ

@ x
¼ 0;

we obtain

@ 2&̃

@t 2
¼ @ 2

@ x2
c2s &̃þ P̃rad

$ %
: ð21Þ

The Alfvén wave pressure can be related to their population den-
sities via the energy density, so

Prad ¼
X

k

!k Ñþ þ Ñ!$ %
:

Using equation (14) between the density perturbations and the
Alfvén waves and separating the populations of forward and
backward propagating sound waves &) , we can obtain from
equation (21) the following dispersion relation for the nonlinear
growth of the acoustic branch via modulational interactions:

!2 ! q2C 2
s ¼ q2

X

k

!k

2&0
iqkVAL

)!1
k;q

@

@k
N)
k

' (
:

Upon writing ! ¼ )qcs þ i!) , we then find the following
growth rate of acoustic perturbations:

!) ¼ q2

4&0

VA

cs

X

k

k!kL
)!1
k;q

@

@k
N)
k

' (
:

Note that modulational instability requires an inverted popula-
tion of Alfvén quanta; i.e., @ Nh i/@k > 0. As Alfvén waves are
generated by high-energy resonant particles in a limited band of
k-space at short wavelength (i.e., krg " 1), such an inversion
clearly can occur (Fig. 4). Note also that shorter wavelength
modulations appear to grow faster, but this trend saturates when
qk#!k /VA. Note also that the coherence time between the
Alfvénic packet and the modulating density perturbation field is
set by L!1

k;q
" #!k /ðq2V 2

gr þ#!2
k Þ, which, not surprisingly, also

sets the correlation time in Dk .

3.2.2. Drury Instability

There is a linear instability that also leads to efficient genera-
tion of acoustic waves and is driven by the pressure gradient of
the CRs in the shock precursor. Such a9PCR-driven process is of
particular interest, as it taps free energy which is generated and
stored as a consequence of the acceleration process itself. The
growth rate has been calculated by Drury (1984) and Drury &
Falle (1986; see also Zank et al. 1990; Kang et al. 1992) and can
be written in the form

!)
D ¼ ! !CPC

&$
) PCx

Cs&
1þ @ ln $

@ ln &

! "
: ð22Þ

Here PC and PCx are the CR pressure and its derivative, respec-
tively, and !C is their adiabatic index. Note that instability re-
quires d ln $/d ln & > !1, so that the structure and dependencies
of the CR diffusivity are critical to the Drury instability. The
physics of this instability is that the density fluctuations in
the decelerating precursor flow induce the CR pressure gradi-
ent fluctuations that (unless they are exactly proportional to the
density fluctuations) make the flow deceleration nonuniform and
so can amplify the initial density fluctuations (i.e., Drury 1984;
Kang et al. 1992). For an efficiently accelerating shock, the adi-
abatic index !C in equation (22) is !C - 4/3. Note that we have
omitted a term !Ux, which is related to simple compression of
wavenumber density by the flow, and which would enter the
right-hand side of equation (21) (see Drury & Falle 1986). This
term is smaller, by a factor of Cs/U , than the second (destabiliz-
ing) term. The first term is damping caused by CR diffusion, cal-
culated earlier by Ptuskin (1981).

3.3. Nonlinear Wave Trains and Alfvén-acoustic Coupling

Compressibility of the media in a shock environment is be-
lieved to be responsible for the formation of coherent magnetic
structures observed upstream of the Earth’s bow shock and inter-
planetary shocks. These structures are thought to evolve from
phase-steepened Alfvén wave trains and should be relevant to
the SNR shocks as well. The bottom line of this highly evolved
and mature field of research is that parallel compressibility trans-
forms Alfvén wave trains into steepened Alfvén solitons, de-
scribed by the DNLS (derivative nonlinear Schrödinger equation;
Kennel et al. 1988a;Medvedev 1999) and its variants. The DNLS
describes, within the framework of coherent interactions, the re-
fraction ofAlfvénwaves by density perturbations and its feedback
on the Alfvén wave envelope. Thus, the DNLS describes a pro-
cess that is the coherent analog of k-space diffusion and that does
not suffer from the limitations of eikonal theory. A simplified
derivation of the DNLS is presented below. Consider the familiar
Alfvén wave dispersion law ! ¼ kkVA. It stems from the differ-
ential equation for the magnetic field perturbations. If we now
entertain the possibility of slowly varying density perturbations,
we have

@B̃

@t
¼ 1

2

@

@z
VA

&̃

&0
B̃; ð23Þ

Fig. 4.—Formation of inverted population of Alfvén quanta under the condi-
tion of localized (at krg " 1) driver.
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where B̃ is the magnetic field perturbation envelope function
in the Alfvén wave, and &̃ is the density perturbation induced
by parallel compression. From the continuity and parallel mo-
mentum equations we have

@&̃

@t
¼ !&0

@Ṽz

@z
; ð24Þ

&0
@Ṽz

@t
¼ ! @

@z
p̃þ B̃2

8'
þ &Ṽ 2

2

! "
; ð25Þ

with &Ṽ 2/2 " B̃2/8' (i.e., both Ṽ and B̃ enter à la Bernoulli) and
Ṽ " B̃, since the basic waves are Alfvén waves. Assuming that
the perturbations propagate at approximately the Alfvén veloc-
ity, from equations (24)Y(25) we obtain the relation between
wave envelope perturbation levels and density fluctuation levels;
that is,

&̃

&0
’ ! 1

2
1! C 2

s =V
2
A

$ %!1 B̃2

B2
0

:

Note that this relation gives a clear and simple relation between
density and magnetic fluctuation energy levels. Substituting this
in equation (23), we obtain

@B̃

@t
þ 1

4

@

@z

VA

1! C 2
s =V

2
A

! "
B̃
## ##2

B2
0

B̃ ¼ 0:

Dispersive corrections to the Alfvén mode can be easily added
to this equation as well. These ultimately limit steepening, pro-
ducing collisionless shocks. For the singular case ( - 1, a mod-
ified kinetic equation (KNLS) can be derived (Medvedev &
Diamond 1996). The DNLS equation possesses soliton solutions
that may self-organize in quasi-periodic structures (wavetrains).
On addition of dissipative term and a driver to this equation
(e.g., growth due to instability), quasi-periodic shock train solu-
tions may also be obtained (Kennel et al. 1988b; Hada et al.
1990). Such DNLS and KNLS shocks can trap and mirror ener-
getic particles, thus enhancing their confinement. Consideration
of DNLS/KNLS structures and their dynamics gives a clear and
compelling physical picture of the Alfvénic mirroring process as
well as constituting a coherent analog of the stochastic modu-
lation discussed above. In particular, the coherent modulation of
instability amplifies the magnetic energy of the envelope, and
thus couples energy to large scales.

4. WAVE QUANTA EVOLUTION IN STRONGLY
REFRACTING TURBULENCE

Note that Alfvén waves are generated at krg " 1, while the
modulational interaction, which scatters the spectral population
to large scales, occurs at krg < 1. In the likely case that this in-
teraction is strong (i.e., &̃/&0 " 1) and stochastic, it can directly
produce wave packet decorrelation, which also contributes to the
interaction damping rate #!k . Here we calculate this decorre-
lation. Since in this case, stochastic refraction is dominant, the
details of the left-hand side of the wave kinetic equation are not
important, so we write, in the precursor flow frame,

@N)

@t
þ uh i ) VAð Þ @N

)

@ x
! k

@ uh i
@ x

@N)

@k

þ @

@ x
ũÑ) þ @

@k
kVA

&̃x
&0

Ñ) ¼ 0: ð26Þ

The mean field equation is just

@ N)' (

@t
þ uh i ) VAð Þ

@ N)' (

@ x
! k

@ uh i
@ x

@ N)' (

@k

þ @

@ x
ũÑ)' (

þ @

@k
kVA

&̃x
&0

Ñ)
) *

¼ 0: ð27Þ

Note that the problem of determining the evolution of the mean
wave populations reduces to calculating the correlations ũÑ)' (

and &̃x/&0ð ÞÑ)' (
, which constitute the spatial and wavenumber

fluxes, respectively. In the spirit of quasilinear theory, we calculate
the value of Ñ) to close the correlators by determining the re-
sponse of N) to the acoustic wave perturbations ũ and &̃x/&0.
Writing the linear propagator

uh i ) VAð Þ @

@ x
! k

@ uh i
@ x

@

@k
' L) ; ð28Þ

the response is given by

@Ñ)

@t
þ L)Ñ

) þ C Ñ)/ 0 ¼ !ũ
@ N)' (

@ x
! kVA

2

&̃x
&0

@

@k
N)' (:

Note that the Hamiltonian structure of eikonal theory means
that the flow in (x; k) space is incompressible, thus allowing re-
arrangement of the order of the derivatives. Here C Ñ)/ 0 is that
portion of the nonlinear terms that is phase coherent with the pop-
ulation fluctuation. Taking modulations to have the form

ũ

&̃=&)

Ñ)

0

B@

1

CA ¼
X

q

ũq

&̃q=&0

Ñ)
q

0

B@

1

CAei qx!!tð Þ;

then the response equation becomes

!i !! qLq
$ %

Ñ)
q;!þC Ñ)/ 0

q;!
'!ũq

@ N)' (

@ x
! kVA

2
iq
&̃q
&0

@

@k
N)' (:

Here we have rewritten L as iqLq for the corresponding Fourier
mode, andC Ñ)/ 0

q;! is given explicitly by [we introduce a ‘‘two-
vector’’ q̄ ' q; !ð Þ for short]:

C Ñ)/ 0
q̄
¼! @

@ x
ũÑ)$ %

þ @

@k
kVA

&̃x
&0

Ñ)
! "1 2

q̄

¼
X

q̄ 0

!iqũ!q̄ 0 Ñ
)
q̄ 0þq̄ þ

@

@k

kVA

2
iq0

&̃!q̄ 0

&0
Ñ)
q̄ 0þq̄

1 2

¼#!q̄Ñ
)
q̄ :

The expression for C Ñ)/ 0
q;! may, in turn, be obtained as in

quasilinear theory by approximating Ñ)
q̄ 0þq̄ in terms of the beats

at q̄þ q̄0 determined by the wave kinetic equation; that is,

!i !þ !0 ! qLq þ q0Lq 0
$ %/ 0

Ñ)
q̄þq̄ 0 þ#!q̄þq̄ 0 Ñ

)
q̄þq̄ 0

¼ iqũq̄ 0Ñ
)
q̄ þ kVA

2
iq0

&̃q̄ 0

&0

@

@k
Ñ)
q̄ :

A formal solution then yields

Ñ)
q̄þq̄ 0 ¼ Rq̄þq̄ 0 iqũq̄ 0Ñ)

q̄ þ kVA

2
iq0

&̃q̄ 0

&0

@

@k
Ñ)
q̄

! "
;
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where

R!1
q̄þq̄ 0 ¼ !i !þ !0 ! qLq þ q0Lq 0

$ %/ 0
þ#!q̄þq̄ 0 :

This in turn gives the result

C Ñ)/ 0
q̄
¼#!q̄Ñ

)
q̄

¼
X

q̄ 0

!iqũ!q̄ 0 !
@

@k

kVA

2
iq0&!q̄ 0

! "
Rq̄þq̄ 0

þ iqũq̄ 0 Ñ
)
q̄ þ kVA

2
iq0

&̃q̄ 0

&0

@

@k
Ñ)
q̄

! "
:

If we ignore cross terms, the expression for #!q̄Ñ
)
q̄ may be

simplified to

#!q̄Ñ
)
q̄ ¼ q2Dq̄Ñq̄ !

@

@k
Dq̄;k

@Ñq̄

@k
;

where

Dq̄ ¼
X

q̄ 0

ũq̄ 0
## ##2<Rq̄ 0þq̄;

Dq̄;k ¼
X

q̄ 0

k 2V 2
A

4
q02

&̃q̄ 0

&0

! "2

<Rq̄ 0þq̄

correspond to wave packet diffusion in position and k, respec-
tively. Note also that

<Rq̄ 0þq̄ ¼
#!q̄þq̄ 0

!þ !0 ! qLq þ q0Lq 0
$ %/ 02þ#!2

q̄þq̄ 0

;

so that #!q is defined recursively, as usual, and that both types
of scattering contribute to the total decorrelation. Finally, again ig-
noring cross terms, we can now obtain the mean field equation,
which is

@ N)' (

@t
þ uh i ) VAð Þ

@ N)' (

@ x
! k

@ uh i
@ x

@ N)' (

@k

! @

@ x
D

@

@ x
N)' (! @

@k
Dk

@

@k
N)' ( ¼ 0:

Here D and Dk again correspond to spatial and wavenumber
diffusion of an Alfvén wave packet, and are given by lim q̄!0Dq̄;
Dk;q̄, respectively. The output of this relatively straightforward
calculation is the set of renormalized quasilinear diffusion co-
efficients D, Dk . In each of these the decorrelation rate is set by
decorrelation rate #!q, since the dissipation in the acoustic
wave spectrum is weak. Since #! is defined recursively, ex-
plicit relations between #!k and the refracting field spectrum
are best discussed in various simple limits. In the case that
decorrelation is dominated by spatial scattering, #!q is given
by

#!q ¼ q2
X

q̄ 0

ũq̄ 0
## ##2 #!q̄þq̄ 0

!̄2 þ#!2
q̄þq̄ 0

:

Here !̄ absorbs the propagator Doppler shift. In this case then,
#! " q2 ũ2

' (
! !̄2

$ %
1=2. Note that a critical level of ũ2

' (
is re-

quired for irreversibility, that is , to make a stochastic Doppler
shift sufficient to overcome the frequency !̄. In the limit where

wavenumber scattering dominates but the waves are weakly
dispersive (i.e., dVg/dk ! 0)

#!q ’
1

#kð Þ2
X

q̄ 0

k 2V 2
A

4
q̄2 &̃q

&0

####

####
2 #!q

!̄ 2 þ#!2
q

;

so

#! " 1

#kð Þ2
k 2V 2

A

4

9&̃ð Þ2
D E

&2
0

! !̄ 2

2

4

3

5
1=2

:

Again, a critical rms density gradient fluctuation level is required.
In the limit of stronger dispersion and strong turbulence, the de-
correlation rate is

#!q " q2V 02
g

k 2V 2
A

4

9&̃ð Þ2
D E

&2
0

2

4

3

5
1=2

:

Note that in this case#! " 9&/&0ð Þ1/2rms. It is important to stress
that here, the physical processes represented by#!q are random
advection and refraction of wave packets by the acoustic wave
fluctuations on scales q,where qrgT1, and not the interaction of
Alfvén waves with krg " 1 with other Alfvén waves. Since, of
course, both processes occur, and since the modulational interac-
tion of Alfvén wave packets with density perturbations generates
larger scale waves, the physics of wave packet decorrelation is,
not surprisingly, strongly dependent on scale. While this may re-
sult in some technical difficulties in qualitative calculations, it
does ensure that irreversible ‘‘modulational turbulence’’ dynamics
persists over a broad range of scales and is not sharply localized at
krg " 1.

5. MECHANISMS OF MAGNETIC ENERGY
TRANSFER TO LARGER SCALES

As should be clear from the considerations discussed above,
there are a variety of nonlinear processes that can lead to the trans-
fer of magnetic energy (generated by accelerated particles in form
of the resonant Alfvén waves) to longer scales. First, as can be
seen from equation (15) (i.e., last term on the left-hand side), scat-
tering of the Alfvénwaves in k-space due to acoustic perturbations
transfers magnetic fluctuation energy away from the resonant ex-
citation region to smaller (and also to larger) k, and also amplifies
the long wavelength acoustic scattering field. Second, the non-
linear interaction of Alfvén waves and magnetosonic waves rep-
resented by the wave collision term on the right-hand side can
drive such a process. Next, as we discussed in the last subsection,
solutions of DNLS-KNLS equations can be well represented by
quasi-periodic wave structures. The interaction between such
structures is similar to the case of shock waves in the Burgers
model. There, interaction leads to coalescence, which in turnmeans
an efficient transfer of excitation to larger scales. Finally, we remind
the reader that even within the frame work of weak turbulence
theory, induced scattering (i.e., nonlinear Landau damping) of
Alfvén waves on thermal protons leads to a systematic decrease
in the energy of quanta, which, given the dispersion law, again
means energy scattering to longer wavelength.

Continuing our main discussion of the wave refraction by
acoustic perturbations generated by the Drury and modulational
instabilities, it is important to emphasize the following point. As
seen from the instability growth rate, equation (22), the Drury in-
stability growth rate is proportional to the gradient of Pc. While
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one would naively expect Drury instability to relax the gradient
that drives it, we note that the outcome of the dynamic feedback
we discuss here suggests that some of the relaxation would be
offset enhanced confinement and acceleration. Indeed, this might
ultimately reinforce the instability, possibly triggering bursts or
cyclic growth. This might help realize mechanisms of regulation
of Pc suggested earlier in Malkov et al. (2000).

We proceed, however, with a simpler approach by not treating
the acoustic perturbations fully self-consistently; that is , we do
not consider the connection between acoustics and particle ac-
celeration and shock modification. Instead, at this level we treat
them as a developed to some quasi-stationary state as a result of,
e.g., Drury instability and we consider how the Alfvénic turbu-
lence then evolves in their field. Thus, we address only the sim-
plest and most fundamental problem, that of the evolution of the
Alfvénwave population in a field of ambient density perturbations.

5.1. Estimates of Alfvén Wave Diffusion in k-Space

The spectral evolution of the Alfvén waves generated by ac-
celerated particles is crucial for confinement and further accel-
eration of these particles. It is described by equation (15) and
involves several processes:

1. wave generation at the rate !,
2. convection of the waves to the shock from the upstream

side at the flow speed U,
3. blueshift of the waves to short scales by the flow compres-

sion [term /Ux; see Malkov et al. 2002],
4. nonlinear interaction [term /C(N)] with each other and

particles (induced scattering), and
5. random scattering in wavenumber on acoustic perturba-

tions (diffusion in k).

Clearly, an exact solution of the problem is very difficult, partic-
ularly because all these phenomena are coupled and related and,
ideally, should be treated self-consistently. For example, the wave
turbulence level N kð Þ directly enters $ pð Þ of the convection-
diffusion equation (5), the solution of which determines both the
flow profile U xð Þ (through Pc and eqs. [6]Y[7]), and the growth
rate ! (through Pc) and also the Alfvén quanta scattering rate Dk

(through the Drury or parametric instabilities). Each of these ap-
pears explicitly in thewave kinetic equation, thus closing the feed-
back loop. A fully self-consistent level of description would jump
several steps ahead of the current DSA models and is clearly be-
yond the scope of this paper. Therefore, to achieve any simple un-
derstanding, several simplifications are necessary. In particular,
we wish to focus here on the spreading of the wave population in
k-space, assuming that the spectrum is initially generated by ac-
celerated particles upstreamof the shock in the resonant k-domain.
Therefore,we ignore nonlinear interaction betweenwaves, aswell
as wave refraction described by the flow compression Ux. This
effect, and (partially) also the wave self-nonlinearity have been
considered by Malkov et al. (2002).

First, we rewrite equation (15) in the following simplified
form

@Ik
@t

þ U
@Ik
@ x

! @

@k
Dk

@Ik
@k

¼ 2U

kVA

@P

@ x
; ð29Þ

where we have introduced the dimensionless wave intensity Ik
normalized to the background magnetic energy

Ik ¼
Bkj j2

B2
0

along with the partial particle pressureP x; pð Þ in the p31 range
(see eq. [8]) normalized to the upstream ram pressure &1u2

1

P ¼ 4'

3

mc2

&1u2
1

p4f p; xð Þ: ð30Þ

We do not distinguish here between the forward- and backward-
propagating waves N)or between Alfvén and magnetosonic
waves. Rather, we simply incorporate all types of magnetic fluc-
tuations in the spectral density Ik. The wave-induced diffusivity
Dk from equation (20) can be represented as

Dk ¼
1

4
k 2V 2

A

X

q

q2#!

q2V 2
g þ#!2

&̃2
q

&2
0

: ð31Þ

To further simplify this expression we note that there are several
reasons for the resonance broadening#! in the last expression,
as discussed above. One is the nonstationarity of the Alfvén
waves being scattered by the acoustic fluctuations, which yields
#! " !. A different reason is the refractive scattering itself. It
comes in two flavors, as discussed above, one of which is related
to the dispersion of the group velocity, V 0

g ¼ @Vg/@k, acting in
concert with the scattering in k, namely #! " ðqV 0

gÞ2
=3D1/3

k , and
is analogous to the resonance broadening familiar from wave-
particle interactions in plasmas (Dupree 1966). This effect is small
for nearly parallel propagation of Alfvén waves, since Vg - const.
However, for a more realistic spectrum composed of amixture of
Alfvén and magnetosonic waves with a sizable off-axis compo-
nent, the effect is significant. The second flavor is simply direct
scattering of the Alfvén quanta in k, regardless of Vg variations.
This contributes to the resonance broadening as#! " Dk /#k 2,
where #k is the width of the wave packet. The first effect is
usually larger in most situations when the field of scatterers is
weak (&qT&0) but in our case, rather the opposite is true (Kang
et al. 1992), so that the second effect turns out to be stronger. This
is ultimately due to the weak dispersion of quasi-parallel Alfvén
waves.
For steepened acoustic fluctuations, we can assume the scat-

terer field is simply an ensemble of shocklike discontinuities, so

&2
q

&2
0

’ A
q0
q

! "2

: ð32Þ

This form is appropriate for a shock ensemble with a charac-
teristic amplitude "(A)1/2 " #&/&0 and a separation"1/q0. This
kind of density perturbation structure is to be expected from the
nonlinearly developedDrury instability (Kang et al. 1992), since
that would produce a pattern of discontinuities. From equa-
tion (31) we then obtain

Dk ’
3

2
Aq0

k 2V 2
A

VG

'

2
! 1

y

! "
; ð33Þ

where y3 ¼ DkV
02
g /q0V

3
g . Further progress is possible only for

the limiting cases of weak and strong scattering. Therefore, in
the case of strong scattering ( y31) we have

Dk -
3'

4
Aq0

V 2
A

Vg
k 2 ' #k 2; ð34Þ
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where V 0
g canceled out. In the opposite case of weak scattering

( yT1) we obtain

Dk -
3

2
A

! "3=2q0k3V 3
AV

0
g

V 3
g

: ð35Þ

Restricting consideration to the case of strong scattering with Dk

as given by equation (34), the steady state limit of equation (29)
becomes

@

@k
k 2 @I

@k
! u1

#

@I

@ x
¼ !2MA

u1
#k

@P

@ x

####
pk¼m!c

: ð36Þ

In the case of weak diffusion, with no spectral spreading (i.e.,
# ! 0), the turbulence level is simply directly proportional to
the particle partial pressure

I ’ 2MAk
!1P p ¼ !c=kcð Þ; ð37Þ

where p is normalized tomc. It is convenient to introduce the fol-
lowing dimensionless variables

% ¼ #x

u1
; Q ¼ 2MAP=k; v ¼ ln

kc

!c

! "
; and $¼ Iev=2þ%=4;

so that the equation for $ becomes

@$

@%
! @ 2$

@v2
¼ ev=2þ%=4 @Q

@%
:

This can be solved to obtain the wave spectral density I

I ¼
Z %

!1

d% 0 exp ! 1=4ð Þ % ! % 0ð Þ½ ,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4' % ! % 0ð Þ

p

;
Z þ1

!1
dv0 exp ! v! v0ð Þ2

4 % ! % 0ð Þ þ
1

2
v! v0ð Þ

" #
@Q

@% 0 v0ð Þ: ð38Þ

By introducing the dimensionless coordinate + ¼ x/Lp, it easy
to see that the main parameter that determines the behavior of
the solution for I is the strength parameter S

S ¼ #Lp
u1

¼ tconv
ts

; ð39Þ

where tconv ¼ Lp/u1 is the precursor (of length Lp) crossing time
and ts ¼ 1/# is the refractive scattering time for the wave. In the
limit S ! 0 one simply obtains I ¼ Q, equation (38), which is
equivalent to equation (37) above. In the more interesting case
S 3 1, by using the steepest descent method we obtain

I ¼ 1

S

Z þ1

!1
dv0 e! v!v 0ð ÞH v!v 0ð Þ @

@+ 0
Q + 0; v0ð Þ+ 0¼+! 1=Sð Þ v 0!vj j; ð40Þ

where H is the Heavyside function. One sees that there is a
S 3 1 reduction in the wave spectral density as compared to the
scattering free case given by equation (37). To clarify this last
result, let us specify the particle distribution function at some
dimensionless distance + ahead of the shock. We assume that
the upstream medium is at x < 0, and since we neglected the
flow compression in equation (36), we assume the stationary so-

lution of the diffusion-convection equation, equation (5) has the
following form

f p; xð Þ ¼ f0 pð Þ exp u1x

$

+ ,
: ð41Þ

Note that in the case of a modified shock precursor, the solution
has a similar form, except for the modified term in the exponent.
That is replaced by an integral over x and a multiplicative factor
of the order of unity, depending weakly on p (Malkov 1997).
For this simple estimate we can assume that $ is a linear func-
tion of p; that is,

$ ’ $b
p

pb
; ð42Þ

where we have introduced the lower cutoff momentum pb from
equation (41) in an obvious manner, $b xð Þ ' $ pb xð Þ½ , ¼ xj ju1.
We also assume that the spectrum has an upper cutoff at pmax

and $ scales linearly with momentum up to pmax, so that $max ’
$b pmax/pbð Þ. We account for the fact that Lp ¼ $max/u1.

From the point of view of confinement and thus acceleration
improvement due to spectral transfer, it is important to under-
stand whether the spectrum that is resonantly generated by a
group of already accelerated particles near pmax propagates to
lower k, so as to facilitate confinement and acceleration of par-
ticles with p > pmax. Note that the wave compression due to the
nonlinear shock modification in the CR precursor leads to an
opposite evolution in k.

Since the waves are originally driven by accelerated particles,
it is instructive to express the wave energy density through the
particle pressure. Note that there is a coordinate-dependent low-
energy cutoff pb xð Þ on the particle spectrum, which physically
means that low-energy particles cannot diffuse far ahead of the
subshock (see eq. [41]). Normalizing the particle pressure to the
shock ram pressure, it is convenient to express the former as an
acceleration efficiency

* xð Þ ' Pc xð Þ
&1u2

1

¼ 4'

3

mc2

&1u2
1

Z pmax

pb xð Þ
dp p3f0 pð Þ; ð43Þ

where we have ignored the exponential factor in the distribution
function, equation (41), since the integral in p effectively runs
above pb xð Þ. Assuming then that pb is reasonably close to pmax,
pb P pmax, which means that x is taken sufficiently far from the
subshock, but not so far so there are not enough particles orwaves.
This case is therefore interesting, in that there is still sufficient
space for spectrum spreading before waves are convected into the
subshock. In this limit, we can estimate the spectrum from equa-
tion (40), expressing it for convenience in terms of the resonant p,
rather than in terms of k, as

I(x) ¼ 2MA

S
* xð Þ

1; p > pmax;

p=pmax; p < pmax" pb:

3
ð44Þ

The connection of this result to scattering of the Alfvén quanta
in k can be seen directly from equation (36). It corresponds to
the solution of equation (36) in two regions of wavenumber k,
where the source is absent, P ’ 0. The low-k asymptotics (high
p) is simply a solution with constant I(k) ¼ const, whereas the
high-k part of the solution corresponds to the constant flux of the
wave density in k-space, k 2@I /@k ¼ const. These limiting forms
obviously match in the region where waves are generated, i.e.,
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where p " pb " pmax.Obviously, equation (44) indicates that dif-
fusive refraction in k-space leads to the confinement and accelera-
tion of higher energy particles, with p > pmax.

The importance of the diffusive refraction in the shock precur-
sor is determined by the parameter S in equations (39), which can
be represented in a slightly different way as

S " q0L

MA
:

Here we have assumed for simplicity that the acoustic shocks in
the ensemble have characteristic strength #& " &0, so that S
roughly represents the averaged number of such shocks reduced
by MA 31. Thus, S " Ns /MA. Therefore, S may vary signifi-
cantly, with an uncertainty related to the number of shocks Ns.
One guideline is provided by the study of acoustic instability of
CRmodified precursors by Kang et al. (1992). According to this
study the number of shocks is not large, about 5Y7. However,
this value of S is severely restricted by constraints related to
computational feasibility. In particular, the maximum particle
momentum is about 100mc and particle diffusivity $ pð Þ has
been taken to grow with momentum more slowly than in the
Bohm case. Therefore, the actual precursor length, and thus Ns,
can be much larger in cases of higher maximummomentum and
values of $ with more realistic scaling. On the other hand, co-
alescence of shocks would reduce this number, making the pa-
rameter S large, but not very large. A precise value ofNs requires a
detailed study of the kinetics of the shock population in the tur-
bulent precursor. This is beyond the scope of this paper. However,
simple scaling of the results fond by Kang et al. (1992) suggests
that Ns falls in a range 103 < Ns < 104. Since 10 < MA < 103,
this assures us that S 3 1. More rigorous determination of S re-
quires a detailed analysis of the competition between shock gen-
eration and shock coalescence, which is generic to compressible
turbulence (Lazarian & Beresnyak 2005).

At this point, it is appropriate to discuss, more generally, the
flow of wave population density N and wave energy density E in
k-space that results from the stochastic scattering of Alfvén waves
off precursor density fluctuations that we described above. Since
this interaction is modeled (at the quasilinear level) by diffusion in
k-space, we can write the relevant part of the wave population
kinetic equation as

@ Nh i
@t

¼ @

@k
Dk

@ Nh i
@k

þ : : : ;

so a gradient in the population Nh i produces a flux in k :

"k ¼ !Dk
@ Nh i
@k

:

Thus, since waves are excited at krg " 1, @ Nh i/@k > 0 for
krg < 1 and @ Nh i/@k < 0 for krg 31. Thus,"k < 0 for krg < 1,
suggestive of a flux of the Alfvén wave population density to
large scales. The total wave population

N ¼
Z kmax

kmin

dk Nh i

evolves according to

dN
dt

¼ Dk
@ Nh i
@k

####
kmax

kmin

and thus is determined by the slope of the spectrum N in the
high- and low-k limits. Since the wave energy density E ¼ !kN,
the evolution of the total energy

E! ¼
Z kmax

kmin

dk E kð Þ

is given by

dE

dt
¼

Z kmax

kmin

dk!k
@

@k
D
@ Nh i
@k

¼ !kDk
@ Nh i
@k

####
kmax

kmin

!
Z kmax

kmin

dk
@!

@k

! "
Dk

@ Nh i
@k

:

A detailed spectral evolution calculation, beyond the scope of
this paper, is required to precisely determine the sign of dE/dt.
That said, it seems very likely indeed that the wavenumber-
integrated contribution (second term on right-hand side) is both
dominant and negative. This follows from Dk > 0, Vg ¼
@!/@k > 0 (i.e., the counterpropagating streams do not precisely
balance) and @ Nh i/@k * 0, since there is a greater population
density at small scales. Thus, dE/dt < 0, which is also consistent
with the outcome of the modulational instability calculation.
Since waves are scattered by refraction by precursor density fluc-
tuation, we know that the nonlinear interaction leaves

d

dt
Ew þ E&

$ %
¼ 0;

so dE&/dt > 0; i.e., the decay instability of short wavelength
(krg " 1)Alfvén waves amplifies the precursordensity perturbation
energy and depletes Alfvén wave energy while it scatters Alfvén
wave energy toward larger scales.
The upshot of this decay/modulational interaction process can

thus be viewed as an energy transfer process in k-space that in-
creases the population of high-energy CRs that are confined to the
shock and precursor. This may be seen by considering the se-
quence below; that is,

1. as usual, energetic CRs generate Alfvén waves with krg " 1
2. these waves scatter off of ambient density perturbations in

the precursor via decay instability, thus

(a) producing larger wavelength Alfvén waves
(b) amplifying the density perturbation field and so produc-

ing a flow of fluctuation energy (including magnetic energy)
toward longer scales. At the same time,

(i) the longer wavelength Alfvén waves will confine higher
energy particles

(ii) the precursor density perturbations will produce high-
efficiency acceleration (i.e., beyond the Bohm limit) of particles
with p * p& (where p& corresponds to the knee) by scattering
these particles in a converging flow. This process does not re-
quire particles to cross and recross the shock itself.

In this way, we see a direct connection between fluctuation
energy flow to larger scales and achieving increased particle en-
ergy during the acceleration process. Note also that two accelera-
tion processes (i.e., the traditional one involving multiple shock
crossing via confinement by turbulent pitch-angle scattering
and the recently proposed one involving scattering off inhomo-
geneities in the converging precursor flow) can work together by
exploiting the wave scattering mechanism discussed here.
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6. CONCLUSIONS AND DISCUSSION

In this paper, we have examined the dynamics and generation
of mesoscalemagnetic field in diffusive shock acceleration (DSA).
The principal results of this paper are

1. A new (in the context of DSA theory) nonlinear, multiscale
interaction mechanism involving precursor density fluctuations
and resonantly generated Alfvén waves was identified. This mech-
anism is one of modulational or decay instability of Alfvén waves
in a scattering field of density perturbations.

2. The demonstration that such interaction:

(a) generates larger scalewaves,which in turn confinehigher
energy particles to the shock, thus allowing their acceleration

(b) can also enhance the level of density fluctuations in the
precursor, and so assist in the (recently proposed) high-efficiency
acceleration by scattering cosmic-ray (CR) particles off inho-
mogeneities in the converging flow.

3. The explicit construction of a strong turbulence theory,
based on modulational interaction, for calculating the spread-
ing of Alfvén wave energy. The principal mechanism by which
Alfvén wave energy is scattered to larger scales is shown to be
random refraction by the spectrum j 9&̃/&ð Þqj

2 of density gradient
fluctuations in the precursor flow. These density fluctuations can
be produced by the modulational process itself, or develop from
precursor instabilities, such as the Drury instability.

4. The identification of the critical parameter that governs this
k-space diffusion process, namely S ¼ L/u1%s, where 1/%s "
Dk /#k 2 is the refractive scattering time.

5. The demonstration that for S > 1, diffusion in kwill gener-
ally broaden and suppress narrowband spectra at krg " 1, while
scattering energy to longer (and shorter) wavelengths.

The relation of this type of mechanism to existing concepts in
DSA theory was discussed thoroughly.

The results of this paper have several interesting implications
for high-energy cosmic-ray acceleration. First, given that density
fluctuations are always present via the Drury instability, waves at
krg " 1 will not grow to large-amplitude ("Bk B0) but rather
will have their energy diffused in k to a broad band of larger and
smaller scales. Note that this new nonlinear mechanism of sat-

uration of the resonant rms magnetic energy is independent of
the quasilinear-type instability saturation mechanisms discussed
in x 1, which were considered earlier by, e.g., MacKenzie &Voelk
(1982) and Achterberg & Blandford (1986). Thus, theories that
predict the generation of strong, small-scale fields without consid-
ering scattering by precursor fluctuations probably have signifi-
cantly overestimated the strength of the field at krg " 1. Second,
the modulational mechanism presented here, while not a dynamo
in a strict sense, is a robust and universal means to scatter wave
energy to larger scales and so confine higher energy particles (i.e.,
p > pmax). Hence, it constitutes a novel means for enhanced ac-
celeration. A quantitative calculation of the resulting energy spec-
trum clearly requires solution of the coupled kinetic equations for
Alfvén waves, acoustic perturbations, along with the evolution
equation for the energetic particle distribution function f, and the
nonlinear shock conditions. This is obviously a formidable task,
and one thatwill require significant effort in the future. However, a
more tractable approach (i.e., a first step) is to solve only the
coupled equations for the resonantly generated Alfvén wave pop-
ulation and the energetic particle distribution function, incorporat-
ing diffusion in wavenumber by a prescribed spectrum of ambient
density fluctuations associated with Drury instability. This calcu-
lation, which is a fairlymodest extension of the analysis in x 5.1 of
this paper, should reveal the quantitative relations between the
precursor scatterer field spectrum and the energy spectrum of ac-
celerated particles confined to the shock by turbulent pitch-angle
scattering. The results of this calculation will be presented in a fu-
ture publication. However, the reader should also keep in mind
that the modulational instability will amplify any perturbations in
the precursor, thereby also enhancing acceleration by scattering of
CRs by inhomogeneities in its converging flow. Thus, it increas-
ingly seems that the most energetic particles result as much from
precursor dynamics as from the traditionally invoked crossing of
the subshock discontinuity per se.
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